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Abstract — A numerical calculation scheme is described for predicting the transport of a passive scalar
contaminant through a turbulent boundary layer. The scheme incorporates an algebraic stress closure for the
turbulent stresses and heat fluxes based on the model of references [9-11]. A feature of the numerical
treatment is the use of different finite-difference grids for the velocity and scalar fields each of which may
expand independently in the down-wind direction so as just to cover the regions where significant gradients
exist in the relevant dependent variables. Computations are reported for the diffusion of line and point
sources with both ground and elevated releases. Calculations are generally in encouraging agreement with
the measured behaviour.

NOMENCLATURE
aj, convection/diffusion coefficients in finite-
difference  concentration  equation
(m=P,N,S, E WU);
aj, convection/diffusion coefficients in finite-

difference equations for temperature and

hydrodynamic variables (n = P, N, S, U,

respectively);

mean and fluctuating pollutant concen-

trations, respectively;

C,, C,, Cs, CY, C5, C,, constants appearing
in the modelled Reynolds-stress
equations;

Cio, Ci Cio, Ch, constants appearing in the
modelled turbulent scalar flux equation;

C.1, C.2, C,, constants appearing in the modelled
dissipation rate equation;

C,c,

Dy, D, D,, diffusion fluxes — w;u; and ;,—E and
turbulence kinetic energy, respectively;

k, turbulence kinetic energy;

l turbulence length scale;

n, unit vector normal to the ground;

P, P;, P, P,, production of k, wu; ¢* and uc,
respectively;

R, residual of finite-difference solution;

R,, ratio of generation to dissipation of tur-
bulence energy;

S5, source term in finite-difference equation;;

U,u, mean and fluctuating  velocities,
respectively ;

X,, lateral distance from the plane of sym-

metry to the edge of concentration grid;
X, height of the upper boundary of the
hydrodynamic grid;
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XY, X4, heights of the lower and upper edges of
the concentration grid, respectively;
X coordinates in the Cartesian frame of

reference.

Greek symbols

B, height of maximum concentration
location;

Ba, height in the plane of symmetry where C
= 0.75 C pax;

Ba, lateral displacement of location where C
=0.75 Cppans

I, diffusion coefficient;;

0, boundary layer thickness;

i), Kronecker delta;

& & &, &, dissipation rate of &,
wuy, we and c?, respectively;

1, normalised vertical coordinate of con-
centration grid;

Mo normalised vertical coordinate of hydro-
dynamic grid;

K, von Karman constant;

Ay, A3, lateral and vertical locations where C
= 0.5C,,,,, respectively;

i, molecular viscosity;

v, kinematic viscosity;

¢, normalised lateral coordinate of con-
centration grid;

P, density;

Ty wall shear stress;

i approximation of the  pressure-

scrambling term in ru, equation;;

®ijm (m = 1,2), components of ¢;; (excluding wall
effects);

D components of ¢;; due to wall effects;
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bics approximation of pressure-scalar gra-
dient in u;c equation;

Piem (m = 1,2), components of ¢, (excluding wall
effects);

components of ¢, due to wall effects.

¢icw3

Superscripts and subscripts

IS

, denotes ensemble average;

i denotes coordinate direction (i = 1, 2, 3,
refer to streamwise, vertical and lateral
directions, respectively);

i, j, k, pertaining to nodal location in finite-
difference grid at x; ; x; ; x5 !
max, indicates maximum value.

1. INTRODUCTION

GENERAL concern at the release of pollutants into the
atmosphere together with the advent of nuclear energy
and its hazards have emphasized the need to be able to
calculate downwind concentrations of pollutant em-
itted from sources into the atmosphere. Due to the
complexity of the flow in the earth’s boundary layer,
attempts at estimating the dispersal characteristics
have in the past relied on drastically simplified ma-
thematical and physical models supported by experi-
mental data of one kind or another. The earliest and still
the most widely used approach to dispersal prediction
is the ‘Gaussian Plume Model’, details of which can be
found in Pasquill [1] or Slade [2]. With this scheme,
the atmospheric surface layer is regarded as statisti-
cally steady and homogeneous while the distribution
of concentration is supposed to have Gaussian charac-
teristics. Rates of plume spread are supplied from
consolidated experimental data recorded over a wide
range of atmospheric stability conditions [1].

Although the Gaussian plume method is easy to use
and inexpensive, the assumption of homogeneity se-
verely restricts its applicability For example, the
method is not capable of simulating the effects of
different levels of surface roughness or of variations of
surface conditions with downstream distance. Further,
the fact that the spread of the plume is dependent on
the height of release (Davar [3]), makes it necessary to
assemble a large body of empirical rate of spread data.
In practice the only comprehensive data available are
for ground level releases.

Other approaches have been based on analytical
solutions of the time-averaged transport equation for
the pollutant concentration C:

oc ¢ ac é e

e L A LT
Here x,, x, and x, are the Cartesian coordinates in the
wind direction and the lateral and vertical directions
respectively, U, is the wind velocity, while I'; and 'y
denote the effective turbulent diffusivities in the x, and
x, directions. Several investigators (e.g. Smith [4] and
Yih [5]) have obtained analytical solutions to equa-
tion (1) assuming power-law variations of the mean

velocity and the turbulent diffusivities with height. In
practice the need to restrict distributions to forms that
allow analytical solutions is a severe drawback to this
type of analysis. By contrast, numerical methods of
solution allow more realistic physical assumptions and
also open the possibility of simuitaneously predicting
the behaviour of both the pollutant plume and the
boundary layer for arbitrary boundary conditions. An
initial step in this direction has been taken by Ragland
and Dennis [6] who obtained numerical solutions to
equation (1), with a fully implicit, finite difference
scheme, for the case of an elevated point source in a
two dimensional boundary layer.

More recently, Catton and Wassel [7] employed a
modified version of Patankar and Spalding’s [8]
boundary layer procedure to predict dispersal from a
line source. Their analysis solved simultaneously the
transport equations for streamwise momentum, for
pollutant and (for thermally stratified flows) potential
temperature. To calculate the turbulent diffusivities, a
mixing length hypothesis was used which incorporated
a rudimentary modification for buoyant effects.

The present contribution adopts the same general
approach as Wassel and Catton but has chosen a more
capacious framework both for modelling the turbulent
transport mechanisms and for handling the numerical
simulation. The turbulence model employed is a
simplification of the second-moment closure of [9-11]
involving the solution of transport equations for the
turbulence energy k and its rate of dissipation ¢. An
important feature of the model is that anisotropies in
the effective diffusivities emerge naturally from the
system of equations as do likewise influences of
buoyancy. There have been several numerical studies
of different aspects of the atmospheric boundary layer
with this type of closure (e.g. [12-14]) though only
Lewellyn and Teske [15] appear to have employed
such a model for studying pollutant dispersal. The
latter contribution provides several interesting pre-
dictions of pollutant transport but provides little firm
comparison with experiment.

Although the present procedure is ultimately in-
tended for application to atmospheric dispersal, the
present contribution limits attention to the simulation
of various wind-tunnel dispersion studies under essen-
tially neutral conditions. These data, we believe,
provide a more reliable and well-defined testing
ground than the atmospheric measurements.* The
specific situations considered are steady, point or line
sources of pollutant emitted into a two-dimensional,
turbulent boundary layer flowing over a plane surface
whose roughness may vary in the downstream direc-
tion but not laterally. The momentum of the plume
fluid is assumed to be small encugh not to disturb
significantly the boundary layer.

*[t is, however, recognized that several important features
of atmospheric dispersion are not reproduced in the wind
tunnel.
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2. THE MATHEMATICAL AND
PHYSICAL MODEL

2.1. The conservation equations

The dispersal of a passive scalar contaminant in a
statistically stationary, two-dimensional turbulent
flow without body forces is governed by the following
set of transport equations:

Continuity :
opU,  8pU, -0 2)
x4 0x3
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b7} 0
5“9U1U1+ ax3ﬂU3U1
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In the above, u; denotes a fluctuating velocity in
direction x; about the mean value U; and c is the
corresponding ﬂuctuatlon about the mean concen-

tration. The correlations u, u,, uzc and u,c represent
the momentum and concentration fluxes due to the
turbulent motion. They are at present unknowns to the
system of equations; approximations are provided in
the next section.

Due to the large differences in the dimensions of the
plume and the boundary layer it turns out to be
advantageous to use two distinct, intermeshed grids
for the solution. Equations (2) and (3) are solved on a
coarse grid spanning the whole boundary layer while
equation (4) is solved on a separate fine grid. The grids
expand independently so as just to encompass the
region where significant gradients exist in the quan-
tities being calculated. To facilitate the introduction of
the expanding grids, the equations are recast in terms
of two new sets of independent variables. For the
concentration field we replace the Cartesian coor-
dinates by x, ¢, n where

E=x2/X3; n=1(x5— )/(XU—X)

where X ,, X5, X5 and X, are reference distances which
will be prescribed more precisely later. Correspond-
ingly, the velocity field is described in terms of
coordinates x and n, where

6

X =Xp5

My = X3/ X 5.

On transforming to the new coordinate system,
equations (2—4) may be written:
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2.2. The turbulence model

The purpose of this section is to provide a closed set
of equations for the correlations u u,, u,¢ and usc.
The approach to be adopted has become known as an
‘algebraic stress model’ [16]. It is basically a second-
moment closure (i.e. one based on a closure of the exact
transport equations for the Reynolds stresses and heat
fluxes) in which, by approximating the transport of

™

u;u; and u;c in terms of the transport of the turbulence
kinetic energy, k and the mean square variance of the

concentration, ¢?, algebraic rather than differential
equations emerge for the Reynolds stresses and scalar
fluxes. The closure approximations we adopt have
been previously reported and discussed in the litera-
ture, particularly in [9-11]. Here, therefore, we shall
not comment extensively on the physical basis of the
forms used.

We write the Reynolds stress transport equations in
the symbolic form:

Duy;

D T ®

&+ @+ Dy
where the terms on the right side of (8) denote
interactions which are conventionally labelled pro-
duction (Py), dissipation (g;), pressure-scrambling
(¢;) and diffusion (2,;). No approximation is needed
for the production terms which are exactly expressible
as

At high Reynolds numbers dissipation occurs in the
finest-scale motions that may usually be regarded as
isotropic. The process g;; is thus expressible in terms of
the dissipation rate of turbulence kinetic energy:

— 2
gy = §0;¢.

Approximation of the pressure-scrambling pro-
cesses is complicated by the fact that there are several
contributions to the total that need to be separately
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accounted for. We here adopt the scheme recently
applied in [11] to explain the hitherto paradoxical
response to stable stratification of the lower region of
the atmospheric boundary layer. We write

bi; = bijy + Gijp + Pijun

where
ff— 2
$ijy = —C,4 l;( ui; — géijk> :
P
$ip=—C, (Pij - ';k 5;’,);
€
Pijw = CIE ‘ukum ’lk’lméij - Eukui mn;

o —

- I
(1)

) 2
+ ¢ (d)kml My Ny 0y — §¢ik2 M n;

2 !
- g‘f’jkz U Qi) <g>

Here the n terms denote unit vectors normal to the wall
(ie. the ground) ! is the turbulence length scale, k*/2/¢
and x, is the normal distance from the point in
question to the ground. In the outer region of a
turbulent boundary layer the length scale is usually
fairly uniform so the influence of ¢,;,, diminishes with
increasing distance from the ground (indeed, physi-
cally the term is accounting for the reflections of
pressure pulses from the ground).

The diffusive transport term is handled indirectly.
We take the term to the left side of equation (8) and
following Rodi [17] write:

D)o

Du,u; 9)_@(1» ,
Dt Y7 k \pe

where Z, denotes the diffusive transport of turbulence
energy. From the turbulence energy equation,
however,

(10)

and we thus use the RHS of (10) instead of the LHS in
9).
With the above approximations, an algebraic set of

equations emerge for w;u; which, for the plane two-
dimensional thin shear flows considered here, lead to
the following expressions for each of the components:
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where for brevity R, stands for the ratio of the
generation : dissipation rates of turbulence energy.

Equation (10), from which the turbulence energy is
obtained, still contains the diffusive transport and
dissipation rates as unknowns. We adopt the simple
Daly-Harlow [ 18] model of the former process (where
the term is to be thought of as accounting for transport
due to both pressure and velocity fluctuations):
é ke kY ;
Y= | Cowjuy ). (15}
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The energy dissipation rate is obtained from its own
transport equation:
De 1 ¢ i ¢
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For the two-dimensional, steady flow fields considered
in the present study equations (10) and (16) take the
following form:

U ok U ok
' ox, ? ox,
— U, c ( k— Fk)
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Approximation of the turbulent scalar fluxes u:c
follows a parallel route to that of the Reynolds stresses.

The transport equation for u;¢c may be written:

Du;c — &C .
(_—u,c - QK) = — Ul = + Pt $ic + G {(19)

Dt ox;

where the processes denoted by the symbols are
production rate of u;c by mean strain (Py), destruction
by molecular action (¢,), pressure scrambling (¢;.), and
diffusive transport (Z,.).

The first is exactly expressible as
U,

P, = — W C o
X,
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the second is zero in locally isotropic turbulence (and is
henceforth neglected) while, following [11], the in-
fluential correlations between pressure and scalar
gradient fluctuations are approximated as

¢ic = ¢ic1 + ¢i02 + ¢icw’ (20)
where

e\ —
i1 = _C10<E)ui0; iz = —Cy. Py

e—
Giew = + Clu;“kc ety (/xg) + Coe Pie, 2 1y (1/X,)

and C,,, C,, C)., and C}, are constants.

As in the stress equations, the diffusive transport
term is grouped with the convection term and follow-
ing [19] these are then jointly expressed as

Dugc wel(P.—e) GPy—e)
(“ﬁ‘@Q:?[ a T x ]"2”

where P, and ¢, are the production and dissipation

rates of ¢2, the mean square variance of concentration
fluctuations.

For the present we assume P, = ¢, which eliminates
the first term on the right of equation (21). This
practice is not consistent with that followed in for-
mulating the Reynolds stresses. Consistency would,
however, require solution of additional transport
equations for ¢* and ¢, which, in the present case, are
three-dimensional quantities. The computational ef-
fort required for this is quite substantial, besides which,
no extensively tested modelled equation for ¢, is yet
available; for these reasons the simpler treatment is
currently preferred. Insertion of equations (20) and
(21) into equation (19) thus leads to the following
equations for the scalar flux components:

— k oC —3aU
uc= - —u1u3—+u3c—l(C26—1)
& x4 0x3

R, — 1
2

— k= dC [[(R—1
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+ Clc> s (22)
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& " 0xy 2 X3
24

The empirical coefficients appearing in equations
(11)-(14), (17), (18), (22)—(24) take the magnitudes
shown in Table 1. The values chosen are those
recommended in [9] and [11].

Before proceeding to the method of solution, equ-

ations {(17) and (18) are first presented in the x-n-,
coordinate system:

Uk 1 oUkdX; 1 dUsk
x X, " om, dx | X, om,
k 2 ok
_ ¥ U, —a+ii<cs—ﬂa—> 25)
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X3 571;,_ Xsklaar’h
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kX5 on, e X5 0m,

Finally, equations (6), (25), (26) can all be cast into the
generalized form

oU ¢ 5 0U ¢ dX;

Ox X3

1 aUs¢
X; On,

1 ¢ 6¢>
=S¢+ —5—(Te=—1) 7
¢ (X% 5’1»( d)a’h,
where ¢ can be any of the variables U, k or eand S and
I, are given in Table 2 for the different variables.

3. METHOD OF SOLUTION

3.1. Finite difference grid

In the dispersal problems of interest the vertical
dimension of the plume will typically be one or two
orders of magnitude less than the thickness of the
atmospheric boundary layer. Thus, a grid distribution
that resolved the flow field economically would be too
coarse for the concentration field ; correspondingly, a
grid fine enough to give numerically accurate results of
the concentration would be uneconomical if used for
the whole boundary layer. For these reasons in-
dependent grids are employed for the two fields ; where
required hydrodynamic information is transferred by
interpolation from the flow grid to the scalar one.
When, however, a concentration grid node lies below
the hydrodynamic grid node nearest to the ground, the
well-known semi-logarithmic ‘law of the wall’ for
velocity provides the interpolation formula.

Figures 1 and 2 show sections in the x,—x; and
X,—X, planes of the grids employed. The quantities X5,
XY and X!, appearing in Fig. 1 mean:

X;:  vertical distance from ground to upper boun-
dary of hydrodynamic grid;
XY: vertical distance from ground to upper boun-

dary of concentration grid;
X%4: vertical distance from ground to lower edge
of concentration grid.

Table 1. Constants employed in turbulence model

Constant C, C, C C, Cy
Value 1.80 0.60 0.52 0.28 1.44

C

2 c C
1.90

: s Ci.
0.15 0.25

0.30

Ca
033

Cie 2
0.50 0
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Table 2. S, and 'y, for ¢ = U, k and ¢

¢ Ty Sy
1 dp
U — Xsuu (U, /ény) —— e
14 dx
k— uuy U
k Cs—143 S .k R
£ X; o,
ko fuyuy OU ¢
ST RS
& k X3 ony k

The quantity X, appearing in Fig. 2 is the lateral
distance from the plane of symmetry to the edge of the
(concentration) grid. Also shown on Figs. 1 and 2 are
samples of the ‘control volumes’ employed in the
derivation of the finite-difference equations ; the boun-
daries of these volumes lie midway between adjacent
nodes except at the boundaries of the integration
domain where the edges of the control volume and the
nodes coincide. The scalar quantities k¥ and ¢ are
located at the nodes of the concentration grid. On each
grid the velocities are displaced relative to nodes so
that they lie midway along, and normal to, the sides of
the control volumes as indicated in Fig. 1 (the vertical
and horizontal arrows indicate the locations of the
cross-stream and streamwise velocities respectively).

3.2. The finite difference equations

Integration of equation (7) over a control volume
such as shown in Fig. 1, coupled with the assumption
of a linear variation of C between grid points in the
vertical and lateral directions and a stepwise variation
in the streamwise direction leads to

P _ N s
ai.jci.j,k = ai.jci.j+1.k + ai.jCi.j—Lk

+ anCHLj.k + ax?.VjCi—l.j.k + a}:‘jcxﬂj.kola (28)

7 = Constant =7

My, = Constant

x = Constant 7

I
j

H“H 1 ? k

FiG. 1. Velocity and concentration grids in x,-x; plane.

1 = Constant

Fi16. 2. Concentration grid in x,-x, plane.

where the subscripts i, j and k identify the grid-node
locations in the lateral, and streamwise directions
respectively, all ;, af ;... etc. express the combined effect
of convection and diffusion and

= e

ij
H=N.§,

Similarly, integration of equation (27) over the
control volume (on the hydrodynamic grid) shown in
Fig. 1 gives the following finite difference equation for
the variable ¢:

afd’j,k = a}v¢j+l.k +a§¢j—l.k
+ai iy +STh L+ S (29)

The subscripts j and k again locate the grid in the
vertical and longitudinal directions;; a}, ¢}, ... etc. are
(one-dimensional) coefficients expressing the effects of
both convection and diffusion while

af = 5
and

. X+ Ax et Ang
SPi+ Sy = [ { Sy X3dxdn,,

VX Jony

3.3. Solution of the finite-difference equations

Solution of equations (28) and (29) proceeds in a
stepwise manner, starting from the upstream end of the
integration domain and proceeding step-by-step down-
stream. Thus in equation (28) and (29) the values of
SY, 8F, C,_, and ¢, _, are known from the previous
step ; only values having k subscripts are unknown. To
solve equation (28), the values of C with subscripts
i— landi+ 1 (ie. neighbours to node i in the lateral
direction), are temporarily assumed known. A Gauss-
ian elimination method is then applied to solve for
the concentrations along the vertical grid line j.
Thereafter solution proceeds to the next vertical grid
line, j + 1, and so on until all the concentration values
lying in the cross-stream plane have been obtained.
This sequence of operations completes a ‘sweep’.
Because the levels of C are in fact dependent on the
levels in the adjacent columns, more than one sweep is
required to obtain a satisfactory solution. The satisfac-
toriness of the solution is assessed by calculating the
residual source R which is defined as

R=%

all nodes

N s
'ai.jCLjH.k + ai.j(i.,» ok

E o W
tai ;Civy jux+ai;Cy
v P
+ ai.jCi.j.k—~l - ai.th._iik‘-

The lower the value of R, the smaller the numerical
error in the solution. In the case of the 2-dimensional
variables (ie. Uy, k, or &) the absence of lateral
neighbouring columns renders one application of the
Gauss-elimination method ‘exact’.

3.4. Boundary and initial conditions
The upstream conditions employed are normally
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those given by experiment, if such data exist. When
these are not available a step function is assumed for
the concentration profile, i.e. the value of the con-
centration is assumed zero everywhere except at the
location of the source.

The following boundary conditions are applied as
the calculations proceed downstream. At upper and
lower boundaries of the plume the concentration is set
to zero provided the lower boundary is above the
ground level; at a plane of symmetry or when the lower
edge of the plume reaches the ground the mass flux of
pollutant normal to this boundary is assumed to be
zero. For the flow field, the value of k, ¢ and U, are
given their free-stream values at the outer boundary
while, at the wall, the no-slip condition for U, is
applied. Due to highly non-linear variation of the
velocity near the wall a match is made to the logarith-
mic law of the wall outside the viscosity affected region.
The turbulence quantities k and I are prescribed at the
nodes adjacent to the wall; the energy dissipation rate
there is equated to the generation rate of k (by
assuming local equilibrium) while the turbulent kinetic
energy is taken as four times the kinematic wall shear
stress as indicated by Klebanoff’s data [20].

4. RESULTS AND DISCUSSION

To assess the performance of the expanding grid and
the numerical procedure, comparison was first made
between the predicted and analytical solutions for
diffusion from a point release in a homogeneous flow
field. The numerical results were found to be in-
distinguishable from the analytical solution quoted by
Hinze [21]. A test of the algebraic stress model was
accomplished by simulating Klebanoff’s [20] experi-
ment of a two-dimensional turbulent flow over a
smooth flat plate. Predictions are compared with
experimental values of the mean velocity and shear

stress u, u5 in Fig. 3, the level of agreement is con-
sidered to be satisfactory. Comparisons for the normal
stresses are shown in Fig. 4. The predicted stress levels
in the outer region of the boundary layer are found to
be slightly higher than the experimental values though
this may be due in part to different definitions of &
between experiment and computation (reference [20]
does not provide a precise definition).

The principal plume-dispersal calculations focused
on four cases:

(i) a ground level release from a line source,
(i1) an elevated line source,
(iii) a ground release from a point source and
(iv) an elevated release from a point source.

In all cases the releases occurred within a turbulent,
nominally two-dimensional boundary layer flowing
over a plane, hydrodynamically smooth surface. Grid-
independent solutions were obtained with 20 cross-
stream nodes for the hydrodynamic field and a 15 x 15
grid for the concentration.*

Figure 5 shows the enfargement of the half height 1,

—ulu3/u£

1.0

0.8

0.6

04

0.2

X3/8

F1G. 3. Velocity and shear stress across flat plate boundary
layer : —— predictions; O, @ experiments, Klebanoff [20].

0 0.2 0.4 0.6 0.8 1.0

X3 /8
F1G. 4. Turbulence intensity profiles across flat plate boun-
dary layer : —— predictions; O, @, @ experiments, Kleba-
noff [20].

with distance downstream of a plume emitted from a
ground level line source.t The results show good
agreement with Poreh and Cermak’s [22] experimen-
tal data. These authors report that for an ‘intermediate
zone’ extending to distances up to 186 from the point of
release 15 is well fitted by the formula:

23 = 0.076 x°#, (30)

implying that A, is independent of both the boundary
layer thickness and the free stream velocity. This
behaviour is confirmed by the present study. In Fig. 6,
for example, predictions of A, for two values of
boundary layer thickness are in good agreement with

*For two-dimensional plumes only 3 grid lines were
employed in the lateral direction.

+The half height is defined as the height at which any
streamwise position the concentration level has falien to half
its maximum.
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equation (30} for values of x less than 183; further
downstream, however, the dispersal pattern becomes
sensitive to boundary-layer thickness. Figure 7 shows
the effect of varying the mainstream velocity on the
dispersal. Again, for values of x/8 less than 18, /., is
independent of the velocity while at greater distances a
slightly lower dispersal rate is observed for the higher
velocity. The variation of maximum concentration
with downstream distance is shown in Fig. 6. Here
again the predictions show close agreement with the
experimental data of Poreh and Cermak. Figure %
indicates that the profiles of concentration across the
boundary layer are approximately self-similar m the
intermediate region’; again the calculated profiles
display a behaviour that agrees well with the experi-
mental fit for this region. 1t should be added that exact
similarity is not to be expected, for it can be shown (E!
Tahry [23]) that when the concentration equation is
suitably non-dimensionalized a weak dependence on x
appears, mainly because of the dependence of (4,4}
on x.

The predictions of an elevated line source simulated
the experiments of Paranthoen and Trinité [24], in
which an electrically heated wire was placed parallel to
the wall and perpendicular to the mainstream velocity
The Reynolds number of the flow, based on boundary
layer thickness and mainstream velocity was 17100
the ratio of height of release to boundary layer
thickness was 0.5. Calculations of the vertical tempera-
ture distribution are presented at several downstream
locations in Fig. 9. Initially the predicted plume seems
to have diffused slightly faster than the experimental
one. This discrepancy is we believe due to the use of
time and length scales characteristic of the velocity
rather than the scalar turbulent fluctuations; further
discussion is provided in reference [13] and in Section
5. Further downstream the experimental data fall
below the predicted results, which may be attributed to
a loss of heat through the wall influencing the exper-

CrayU
max“lee _,

{cm

Xl(m)

Fic. 7. Effect of initial thickness of boundary layer on development of line source: (3 proposed algebraic fit

to experiments [ 22], @ experimental data [22}; predictions, Uy, = 487 m/s:

8o = 0127, 8 =

0.28 m.
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FiG. 9. Temperature profiles across air elevated line source:

experiments [24] @ —x, =0.075m; O —x; =0.135m; @

— x, = 0.165m; predictions: —-— x; = 0.075; ~——— x,
=0.135; — x, = 0.165.

mental data (the experimental temperature profiles
suggest a non-zero slope at the wall). Despite these
discrepancies the overall agreement is considered to be
reasonably good.

The case of the ground release from a point source is
considered in Figs. 10-12. Figure 10 shows the va-
riation of the vertical and lateral half widths 2, and 2,
with downstream distance together with the experi-
mental data of Malhotra and Cermak [25] and Solal
[26]. The predictions agree well with both sets of
experiments of the vertical spread while, for the lateral
dispersal, close agreement with Malhotra and

10F

Ay A3

xp (m)

Fi1G. 10. Growth of half-widths of ground level point source:
O,0U,,=274m/s [25]; AU, =45Tm/s [25}; (1, 1
[26]; —-—, ———, —— present predictions.

Cermak’s data is observed. Discrepancies of up to
149, are noted for Solal’s data, however, a disparity
that may be due to convergence of the boundary-layer
streamlines.

The distribution of the maximum concentration in
the plume with downstream distance is shown in Fig.
11. The calculations are found to agree well with both
sets of experimental data. Predictions of the lateral
profiles of the relative concentration C/C,,,, are shown
in Fig. 12 for different heights. These profiles display
similarity at different x locations over the region
considered. The results are in complete agreement with
Malhotra and Cermak’s empirical fit:

C x,\2 3\l 4
— exp0.6934 — (X2} _ _
c.. P 3{ (;Q) <za>

Dispersal from an elevated point source is con-
sidered in Figs. 13-14. Here the source is placed at a
height 0.6455. The Reynolds number based on the
mainstream velocity and boundary layer thickness was
approximately 9330 which corresponds to an experi-
ment reported by Davar [3]. In Fig. 13 the quantities
B3, B, are plotted as a function distance x* ; also shown
is the variation of B (the height of maximum con-
centration) with x. In general the calculations are in
reasonable agreement with Davar’s data, except that
they underestimate the lower value of §,.+ While no
certain explanation can be given for the discrepancy, it
might be said that uncertainties existed in the up-
stream experimental velocity profiles due to the arti-
ficial thickening. Finally, Fig. 14 compares Davar’s
measurements of lateral concentration profiles with
the computed behavior at different heights at a
particular x; agreement is reasonably good.

* B is the value of x, in the plane of symmetry where
C = 0.75C ., and B, is the value of x, where C = 0.75C,.x at
the height of C,,,,,.

183 has two values at each value of x corresponding to
positions in the upper and lower parts of the plume.
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5. CONCLUDING REMARKS

The computational scheme presented in the paper
has been shown to give a generally satisfactory
account of plume dispersal in the four test cases con-
sidered. Although based upon a fairly elaborate physi-
cal and numerical treatment, the scheme is sufficiently
economical for use as the basis for extensive safety
surveys. The economy arises from the use of inde-
pendent finite-difference grids for the scalar and flow-
field variables and from the use of the algebraic-stress-
modelling hypothesis to reduce the transport equa-
tions for the Reynolds stress and scalar fluxes to a set of
explicit algebraic relations.
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Although the present study has limited attention to
neutrally buoyant tests the turbulence model adopted
[11] was developed specifically to provide an expla-
nation of the behavior of the atmospheric boundary
layer under highly stratified conditions. It may thus be
reasonably expected that the present scheme would
provide useful dispersal predictions under realistic
atmospheric conditions, at least so far as effects of
stratification are concerned.

In one respect however the present model does need
improvement. The scheme contains only one charac-
teristic turbulent length scale, k*2/¢ for both the
velocity and the scalar fields. In the atmospheric
boundary layer, however, especially near the point of
release, far smaller scales characterize the dispersal of
the pollutant than are typical of the flow field. As
Lewellyn and Teske [15] have noted, no serious errors
are introduced by the present practice for a ground-
level release because, near the ground, velocity scales
are appropriately small: the problem only becomes
serious as the height of the release is increased. While,
in the laboratory studies considered here, the errors
introduced appear to be fairly small (c.f. Fig. 11), the
effect in the atmospheric boundary layer could well be
substantial because the ratio of plume
width : boundary-layer height is typically some two
orders of magnitude smaller than in the cases here
examined.
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DISPERSION BI ET TRIDIMENSIONNELLE D'UN SCALAIRE PASSIF
DANS UNE COUCHE LIMITE TURBULENTE

Résumé — Un modéle numérique est décrit pour prédire le transport d’un contaminant scalaire passif a

travers la couche limite. Le modéle inclut une fermeture, pour les contraintes turbulentes et pour les flux

thermiques, basée sur le modéle des références [9-11]. Le traitement numérique utilise différentes grilles aux

différences finies pour les champs de vitesse et de scalaire chacun d’eux pouvant étre traité indépendamment

dans la direction de I'écoulement de fagon 4 atteindre les régions ol existent des gradients sensibles des

variables. Des calculs sont traités pour des sources linéaires ou ponctuelles avec des débits faibles ou élevés.
Les calculs sont généralement en accord encourageant avec les mesures.
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DIE ZWEI- UND DREIDIMENSIONALE VERTEILUNG EINES PASSIVEN
SKALARES IN EINER TURBULENTEN GRENZSCHICHT

Zussamenfassung—Zur Vorhersage des Transports einer passiven skalaren Verunreinigung durch eine
turbulente Grenzschicht wird ein numerisches Berechnungsverfahren beschrieben. Das Verfahren enthilt
einen algebraischen Ansatz fiir die Beriicksichtigung der turbulenten Schubspannungen und Wirmestrome
nach dem Verfahren der Literaturangaben [9-11]. Ein Hauptgesichtspunkt der zahlenméfigen Behandlung
ist die Verwendung verschiedener Netze endlicher Differenzen fiir die Geschwindigkeits- und Skalarfelder,
welche unabhingig so weit in die Abwindrichtung ausgedehnt werden konnen, daf sie gerade die Gebiete
iiberdecken, wo bedeutende Gradienten der mafgeblichen Verdnderlichen bestehen. Von Berechnungen fiir
die Ausbreitung von Linien- und Punktqueilen mit Ausldssen sowohl am Boden als auch in erhohter
Position wird berichtet. Die Berechnungen sind allgemein in ermutigender Ubereinstimmung mit dem
gemessenen Verhalten.

ABYX- 1 TPEXMEPHOE PACIPEJEJEHHUE NMACCUBHOI'O CKAJISPA
B TYPBYJEHTHOM [NOIrPAHUYHOM CJIOE

Annotauns — ONHcaHa cxeMa JUIS YHCJIEHHOrO pacueTa [I€PpeHOCa MACCHBHOH CKaJSPHOH NPHMECH
B TypByneHTHOM norpaHudHoM cioe. Cxema BKJTIOYZET AireOpaHveckoe 3aMbikaHue TypOyJIeHTHBIX
HanpskeHUil H TENAOBLIX MOTOKOB. OCHOBAHHOE Ha MONEJIH, m3noxkenuoi B [9-11]. OTauunreabHoOM
0COBEHHOCTBIO MPEIATAEMOii CXEMBI SBIAETCH HCMOJB3OBAHME PA3/IMYHBIX KOHEUHO-PA3HOCTHBIX CETOK
[0S ToJieil CKOPOCTH M CKaJiapa. KaXIyr H3 KOTOPbIX MOXHO HE3aBHCHMO OT .pYrOH fIpOLHTbH
B HANPABJIECHUH TEUEHMS, TAaK 4TOOBI BKIIOYHTL OGJ1aCTH ¢ CYILECTBEHHBIMH PAMEHTAMH COOTBET-
CTBYIOUIMX 3aBUCHMBIX TlepeMeHHbIX. [IpuBeneHbl pacyeThl iid AHQOYIUH JIHHEHHBIX M TOMETHBIX
MCTOYHHKOB, PACIOIONKEHHBIX HA PA3IMYHbIX YPOBHSX B ciloe. PesyibraThl pacyeToB y/10BRETBOPH-
TEABHO COTAACYIOTCH ¢ U3IMEPEHHBIMHU 3HAUYEHUAMMU.



