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Abstract - A numerical calculation scheme is described for predicting the transport of a passive scalar 
contaminant through a turbulent boundary layer. The scheme incorporates an algebraic stress closure for the 
turbulent stresses and heat fluxes based on the model of references [9-111. A feature of the numerical 
treatment is the use of different finite-difference grids for the velocity and scalar fields each of which may 
expand independently in the down-wind direction so as just to cover the regions where significant gradients 
exist in the relevant dependent variables. Computations are reported for the diffusion of line and point 
sources with both ground and elevated releases. Calculations are generally in encouraging agreement with 

the measured behaviour. 

NOMENCLATURE 

convection/diffusion coefficients in finite- 
difference concentration equation 
(m=P,N,S,E, w, U); 
convection/diffusion coefficients in finite- 
difference equations for temperature and 
hydrodynamic variables (n = P, N, S, U, 

respectively); 
mean and fluctuating pollutant concen- 
trations, respectively ; 

Ct, Cz, C,, Cr, C;, CL, constants appearing 
in the modelled Reynolds-stress 
equations ; 

Cl0 Go c;,, c;,, constants appearing in the 
modelled turbulent scalar flux equation ; 

Cal, CE29 c,,, constants appearing in the modelled 
dissipation rate equation ; 

D,,, Die D,, diffusion fluxes - uiuj and G and 
turbulence kinetic energy, respectively; 

k, turbulence kinetic energy ; 
1, turbulence length scale; 

ni, unit vector normal to the ground; 

P, Pij, PC, Pkr production of k, uiuj c2 and uic, 
respectively; 

R, residual of finite-difference solution; 

Ret ratio of generation to dissipation of tur- 
bulence energy ; 

si”, source term in finite-difference equation; 
u, a, mean and fluctuating velocities, 

respectively; 

x2, lateral distance from the plane of sym- 
metry to the edge of concentration grid; 

X3 height of the upper boundary of the 
hydrodynamic grid ; 

x:, x;, heights of the lower and upper edges of 
the concentration grid, respectively; 

xi, coordinates in the Cartesian frame of 
reference. 

Greek symbols 

height of maximum concentration 
location ; 
height in the plane of symmetry where C 
= 0.75 c,,,; 
lateral displacement of location where C 
= 0.75 c,,,; 
diffusion coefficient ; 
boundary layer thickness ; 
Kronecker delta; 

%, E,, dissipation rate of k, 
-- 
uiu,, uic and c2, respectively ; 
normalised vertical coordinate of con- 
centration grid; 
normalised vertical coordinate of hydro- 
dynamic grid ; 
von Karman constant; 
lateral and vertical locations where C 
= 0.5 c,,,, respectively; 
molecular viscosity; 
kinematic viscosity; 
normalised lateral coordinate of con- 
centration grid; 
density; 
wall shear stress; 
approximation of the pressure- 

scrambling term in uiuj equation; 
&ijm (m = 1,2), components of 4ij (excluding wall 

effects); 

+ijw components of 4ij due to wall effects; 
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+irt approximation of pressure-scalar gra- 

dient in uic equation; 

$icm (m = 1,2), components of $iz (excluding wall 
effects) ; 

4icw components of $ir due to wall effects. 

Superscripts and subscripts 
* 

I, 

i, j, k 

max, 

denotes ensemble average ; 
denotes coordinate direction (i = 1, 2, 3, 

refer to streamwise, vertical and lateral 
directions, respectively) ; 
pertaining to nodal location in finite- 

difference grid at x,, i x2. j .x3, k I 
indicates maximum value. 

1. INTRODUCTION 

GENERAL concern at the release of pollutants into the 

atmosphere together with the advent ofnuclear energy 
and its hazards have emphasized the need to be able to 
calculate downwind concentrations of pollutant em- 

itted from sources into the atmosphere. Due to the 

complexity of the flow in the earth’s boundary layer, 
attempts at estimating the dispersal characteristics 

have in the past relied on drastically simplified ma- 
thematical and physical models supported by experi- 

mental data of one kind or another. The earliest and still 

the most widely used approach to dispersal prediction 

is the ‘Gaussian Plume Model’, details of which can be 

found in Pasquill [l] or Slade [2]. With this scheme, 

the atmospheric surface layer is regarded as statisti- 

cally steady and homogeneous while the distribution 
of concentration is supposed to have Gaussian charac- 
teristics. Rates of plume spread are supplied from 
consolidated experimental data recorded over a wide 
range of atmospheric stability conditions [I]. 

Although the Gaussian plume method is easy to use 
and inexpensive, the assumption of homogeneity se- 

verely restricts its applicability For example, the 
method is not capable of simulating the effects of 
different levels of surface roughness or of variations of 

surface conditions with downstream distance. Further, 
the fact that the spread of the plume is dependent on 
the height of release (Davar [3]), makes it necessary to 
assemble a large body of empirical rate of spread data. 
In practice the only comprehensive data available are 

for ground level releases. 
Other approaches have been based on analytical 

solutions of the time-averaged transport equation for 
the pollutant concentration C : 

Here x1, x2 and x3 are the Cartesian coordinates in the 
wind direction and the lateral and vertical directions 
respectively, U, is the wind velocity, while TZ and r3 
denote the effective turbulent diffusivities in the .x1 and 
x3 directions. Several investigators (e.g. Smith [4] and 
Yih [5J) have obtained analytical solutions to equa- 
tion (1) assuming power-law variations of the mean 

velocity and the turbulent diffusivities with height. In 
practice the need to restrict distributions to forms that 

allow analytical solutions is a severe drawback to this 

type of analysis. By contrast, numerical methods of 
solution allow more realistic physical assumptions and 

also open the possibility of simultaneously predicting 
the behaviour of both the pollutant plume and the 

boundary layer for arbitrary boundary conditions. An 
initial step in this direction has been taken by Ragland 
and Dennis [6] who obtained numerical solutions to 
equation (1). with a fully implicit, finite difference 

scheme, for the case of an elevated point source in a 
two dimensional boundary layer 

More recently, Catton and Wassel [7] employed a 
modified version of Patankar and Spalding’s [8] 

boundary layer procedure to predict dispersal from a 
line source. Their analysis solved simultaneously the 
transport equations for streamwise momentum. for 

pollutant and (for thermally stratified flows) potential 
temperature. To calculate the turbulent diffusivities, a 

mixing length hypothesis was used which incorporated 
a rudimentary modifica’ion for buoyant effects. 

The present contribution adopts the same general 

approach as Wassel and Catton but has chosen a more 
capacious framework both for modelling the turbulent 

transport mechanisms and for handling the numerical 
simulation. The turbulence model employed is a 

simplification of the second-moment closure of [9 -1 l] 

involving the solution of transport equations for the 

turbulence energy k and its rate of dissipation r. An 

important feature of the model is that anisotropies in 
the effective diffusivities emerge naturally from the 

system of equations as do likewlse influences of 
buoyancy. There have been several numerical studies 

of different aspects of the atmospheric boundary layer 
with this type of closure (e.g. [12~-141) though only 
Lewellyn and Teske [15] appear to have employed 
such a model for studying pollutant dispersal. The 
latter contribution provides several interesting pre- 
dictions of pollutant transport but provides little firm 
comparison with experiment. 

Although the present procedure 1s ultimately in- 
tended for application to atmospheric dispersal, the 
present contribution limits attention to the simulation 
of various wind-tunnel dispersion studies under essen- 
tially neutral conditions. These data, we believe, 
provide a more reliable and well-defined testing 

ground than the atmospheric measurements.* The 
specific situations considered are steady, point or line 
sources of pollutant emitted into a two-dimensional, 
turbulent boundary layer flowing over a plane surface 
whose roughness may vary in the downstream direc- 
tion but not laterally. The momentum of the plume 
fluid is assumed to be small enough not to disturb 

significantly the boundary layer. 

*It is. however, recognized that several important features 
of atmospheric dispersion are not reproduced in the wind 
tunnel. 
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2. THE MA~EMA~CAL AND 
PHYSICAL MODEL 

2.1. The conservation equations 
The dispersal of a passive scalar contaminant in a 

statistically stationary, two-dimensional turbulent 
flow without body forces is governed by the following 
set of transport equations : 

Continuity : 

aPU1 I a@3 _ () 
ax, ax3 (2) 

Streamwise Momentum : 

&JU,u,+gYU3Ul 
1 3 

a - au1 = -ax 
3 ! 

pull43 - PF 
3 > 

-g (3) 
1 

Scalar Concentration : 

j+‘C “I- $PU,C 
1 3 

= -?&-$)-&(P&+). (4) 

In the above, ui denotes a fluctuating velocity in 
direction xi about the mean value CT, and c is the 
corr~ponding fluctuation about the mean concen- -- 
tration. The correlations u1 us, u2 c and & represent 
the momentum and concentration fluxes due to the 
turbulent motion. They areat present unknowns to the 
system of equations ; approximations are provided in 
the next section. 

Due to the large differences in the dimensions of the 
plume and the boundary layer it turns out to be 
advantageous to use two distinct, intermeshed grids 
for the solution. Equations (2) and (3) are solved on a 
coarse grid spanning the whole boundary layer while 
equation (4) is solved on a separate fine grid. The grids 
expand inde~ndently so as just to encompass the 
region where significant gradients exist in the quan- 
tities being calculated. To facilitate the introduction of 
the expanding grids, the equations are recast in terms 
of two new sets of independent variables. For the 
concentration field we replace the Cartesian coor- 
dinates by x, [, q where 

x=x,; [=x,/X,; 7 = (x3 - m@-; - -m 
where X2, X3, Xi and Xi are reference distances which 
will be prescribed more precisely later. Correspond- 
ingly, the velocity field is described in terms of 
coordinates x and Q, where 

ffh = x3/x3. 

On transforming to the new coordinate system, 
equations (2-4) may be written : 

au1 1 de3 dX, -- 
dx-Xvh afj dx 

+ _f_ wf3 - = 0, (5) 
3 x3 ah 

au,u, i au,u, dX, 1 dV1U3 
ax -~qkatt,dx+~ a?,, 3 

v au, = --- u,u,+-- 
x3 aqh 

au,c 1 dU,C dX: dX\ 
-_~- 

ax xy - x: aq ! 
v&--&l-?) 

> 

-g<y~+&y 

1 a - V, ac 
= --- 

x:-x; dtj ( u3c-nj$f 1 
15---- ( v, ac ---~2~-___ 

x2 x x2 x > 
(7) 

2.2. The turbulence model 
The purpose of this section is to provide a closed set -- - 

of equations for the correlations ulu3, u2c and u3c. 
The approach to be adopted has become known as an 
‘algebraic stress model’ [16]. It is basically a second- 
moment closure (i.e. one based on a closure of the exact 
transport equations for the Reynolds stresses and heat 
fluxes) in .which, by approximating the transport of _ - 
uruj and UiC in terms of the transport of the turb~~ce 
kinetic energy, k and the mean square variance of the 

concentration, 2, algebraic rather than differential 
equations emerge for the Reynolds stresses and scalar 
fluxes. The closure approximations we adopt have 
been previously reported and discussed in the litera- 
ture, ~rticularly in [9-ll]. Here, therefore, we shall 
not comment extensively on the physical basis of the 
forms used. 

We write the Reynolds stress transport equations in 
the symbolic form : 

D&U. 
3 = P, - Eij + r/+j + Bij, 

Dt (8) 

where the terms on the right side of (8) denote 
interactions which are conventionally labelled pro- 
duction (Pii), dissipation (Ebb), pressure-scrambling 
(I$~~) and diffusion (gij). No approximation is needed 
for the production terms which are exactly expressible 
as 

P,=- 

At high Reynolds numbers dissipation occurs in the 
finest-scale motions that may usually be regarded as 
isotropic. The process ~~~ is thus expressible in terms of 
the dissipation rate of turbulence kinetic energy: 

Eij = f 6, E, 

Approximation of the pressure-scrambling pro- 
cesses is complicated by the fact that there are several 
contributions to the total that need to be separately 
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accounted for. We here adopt the scheme recently 
applied in [ll] to explain the hitherto paradoxical 
response to stable stratification of the lower region of 

the atmospheric boundary layer. We write 

where 

2__~ I 
- - ukuj nkni 

3 Ii-i -- X n 

Here the n terms denote unit vectors normal to the wall 

(i.e. the g;ound) I is the turbulence length scale, k3”/t: 
and x, is the normal distance from the point in 

question to the ground. In the outer region of a 

turbulent boundary layer the length scale is usually 

fairly uniform so the influence of 4ij, diminishes with 

increasing distance from the ground (indeed, physi- 
cally the term is accounting for the reflections of 

pressure pulses from the ground). 
The diffusive transport term is handled indirectly. 

We take the term to the left side of equation (8) and 

following Rodi [17] write: 

where Pk denotes the diffusive transport of turbulence 
energy. From the turbulence energy equation, 

however, 

and we thus use the RHS of (10) instead of the LHS in 

(9). 
With the above approximations, an algebraic set of 

equations emerge for uiuj which, for the plane two- 

dimensional thin shear flows considered here, lead to 
the following expressions for each of the components : 

3-2C2+C,C;-‘- 
i 

+C,-1 
-x2 

+ C;$,’ 
1” 

/(C, + R, - 1) (11) 

,=~~[RkiC,-2C;C~~~+Cl-II: 2 

C,+?&+R,-1 (12) 
x1 

._ 
l-tRk-l) (1.1) 

where for brevity R, stands for the ratio of the 
generation : dissipation rates of turbulence energy. 

Equation (lo), from which the turbulence energy is 
obtained, still contains the diffusive transport and 

dissipation rates as unknowns. We adopt the simple 
Daly-Harlow [ 181 model of the former process (where 

the term is to be thought of as accounting for transport 

due to both pressure and velocity fluctuations): 

(151 

The energy dissipation rate is obtained from its own 

transport equation : 

Dc 1 i: x2 ? 
- = PC,1 P,,- - c,2- +--- c,--uju,~~ i k k ?.Xj 

(161 
Dt 2 

For the two-dimensional, steady flow fields considered 
in the present study equations (10) and (16) take the 
following form : 

(18) 

Approximation of the turbulent scalar fluxes IQC 

follows a parallel route to that of the Reynolds stresses. 

The transport equation for uic may be written: 

^ _ 

UiUj :--: + Pj, + tic at i:ic. 119) 
’ J 

where the processes denoted by the symbols are 

production rate of uic by mean strain (Pi,), destruction 
by molecular action (ci,), pressure scrambling (&), and 

diffusive transport (Pi,). 
The first is exactly expressible as 

P,, = - lit&c --’ , 
?u, 
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the second is zero in locally isotropic turbulence (and is 
henceforth neglected) while, following [ll], the in- 
fluential correlations between pressure and scalar 
gradient fluctuations are approximated as 

where 

and Cle, CZe, C\,, and C;, are constants. 
As in the stress equations, the diffusive transport 

term is grouped with the convection term and follow- 
ing [19] these are then jointly expressed as 

where PC and E, are the production and dissipation 

rates of c’, the mean square variance of concentration 
fluctuations. 

For the present we assume P, = E, which eliminates 
the first term on the right of equation (21). This 
practice is not consistent with that followed in for- 
mulating the Reynolds stresses. Consistency would, 
however, require solution of additional transport 

equations for 2 and E, which, in the present case, are 
three-dimensional quantities. The computational ef- 
fort required for this is quite substantial, besides which, 
no extensively tested modelled equation for cc is yet 
available; for these reasons the simpler treatment is 
currently preferred. Insertion of equations (20) and 
(21) into equation (19) thus leads to the following 
equations for the scalar flux components : 

+ c,, + C;,C,,- 

(24) 

The empirical coefficients appearing in equations 
(1 l)-(14) (17), (18), (22)-(24) take the magnitudes 
shown in Table 1. The values chosen are those 
recommended in [9] and [ 111. 

Before proceeding to the method of solution, equ- 

ations (17) and (18) are first presented in the x-u-qh 

coordinate system : 

XJ,k 1 au, k dX, 1 aU,k 

ax -zqh aqh 
-x+-- 

x3 a?h 

au,E qh a&E dX3 
~-- __- 

ax x3 aqh dx 

i au,& 
+--= 

c,, E - au, 

x3 ah -zkU’U3 aqh 

Finally, equations (6), (25), (26) can all be cast into the 
generalized form 

au,4 
ax 

‘I au14 dX3 I pu34 

x3 ah dx x3 ah 

’ 
(27) 

where 4 can be any of the variables U,, k or E and Sand 
I, are given in Table 2 for the different variables. 

3. METHOD OF SOLUTION 

3.1. Finite dzference grid 
In the dispersal problems of interest the vertical 

dimension of the plume will typically be one or two 
orders of magnitude less than the thickness of the 
atmospheric boundary layer. Thus, a grid distribution 
that resolved the flow field economically would be too 
coarse for the concentration field ; correspondingly, a 
grid fine enough to give numerically accurate results of 
the concentration would be uneconomical if used for 
the whole boundary layer. For these reasons in- 
dependent grids are employed for the two fields ; where 
required hydrodynamic information is transferred by 
interpolation from the flow grid to the scalar one. 
When, however, a concentration grid node lies below 
the hydrodynamic grid node nearest to the ground, the 
well-known semi-logarithmic ‘law of the wall’ for 
velocity provides the interpolation formula. 

Figures 1 and 2 show sections in the x1-x3 and 
x1-x* planes of the grids employed. The quantities X3, 
Xy and Xi, appearing in Fig. 1 mean: 

x3: vertical distance from ground to upper boun- 
dary of hydrodynamic grid ; 

xy: vertical distance from ground to upper boun- 
dary of concentration grid ; 

x:: vertical distance from ground to lower edge 
of concentration grid. 

Table 1. Constants employed in turbulence model 

Constant 

Value 
C, C* c; c; C,, C,, C, C, c;, c;, c;, c;, 
1.80 0.60 0.52 0.28 1.44 1.90 0.15 0.25 0.30 0.33 0.50 0 
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Table 2. S, and Tm for q5 = U, k and i: 

1 dP 
u - ~,~4,~,.i(au,18~,) 

,I d\ 

k 

i 

k __ 

c, -u: i: 

The quantity X2 appearing in Fig. 2 is the lateral 

distance from the plane of symmetry to the edge of the 

(concentration) grid. Also shown on Figs. 1 and 2 are 

samples of the ‘control volumes’ employed in the 
derivation of the finite-difference equations; the boun- 

daries of these volumes lie midway between adjacent 
nodes except at the boundaries of the integration 

domain where the edges of the control volume and the 

nodes coincide. The scalar quantities k and I: are 

located at the nodes of the concentration grid. On each 

grid the velocities are displaced relative to nodes so 
that they lie midway along, and normal to, the sides of 

the control volumes as indicated in Fig. 1 (the vertical 

and horizontal arrows indicate the locations of the 

cross-stream and streamwise velocities respectively). 

3.2. The,finite diference equations 
Integration of equation (7) over a control volume 

such as shown in Fig. 1, coupled with the assumption 

of a linear variation of C between grid points in the 
vertical and lateral directions and a stepwise variation 
in the streamwise direction leads to 

a,qjCi.j,k=a~jC,.j+I.k+a:jCi.j-*.k 

+ aEjCi+l.j.k + a?jCi-l.j.k + aj(jCi.j.k-13 (28) 

?I 7 Constant -. 
x =constant 1 / = Constant 1 

/ 
/ 

A / 

----- 

, 

I 

‘3, k ----- 

Ftc;. 1. Velocity and concentration grids in xlmmxJ plane. 

FK;. 2. Concentration grid in x1 -x2 plane 

where the subscripts i, j and k identify the grid-node 
locations in the lateral, and streamwise directions 

respectively, a,“j, a; j. etc. express the combined effect 
of convection and diffusion and 

Similarly, integration of equation (27) over the 

control volume (on the hydrodynamic grid) shown in 
Fig. 1 gives the following finite difference equation for 
the variable 4 : 

af#j.k=QjY4j+l.k +"S$j-l k 

f aj’4,.k_l t Sy4j.k + Si. (29) 

The subscripts .j and k again locate the grid in the 
vertical and longitudinal directions: u;‘, uf, etc. are 

(one-dimensional) coefficients expressing the effects of 

both convection and diffusion while 

and 

3.3. Solution of the ,jnite-diflereme equatiorrs 
Solution of equations (28) and (29) proceeds in a 

stepwise manner, starting from the upstream end of the 
integration domain and proceeding step-by-step down- 

stream. Thus in equation (28) and (29) the values of 

Sy, ST, C, _ 1 and & 1 are known from the previous 

step; only values having k subscripts are unknown. To 
solve equation (28), the values of C with subscripts 
i - 1 and i + 1 (i.e. neighbours to node i in the lateral 

direction), are temporarily assumed known. A Gauss- 
ian elimination method is then applied to solve for 
the concentrations along the vertical grid line j 

Thereafter solution proceeds to the next vertical grid 
line,j + 1, and so on until all the concentration values 

lying in the cross-stream plane have been obtained. 
This sequence of operations completes a ‘sweep‘. 
Because the levels of C are in fact dependent on the 
levels in the adjacent columns, more than one sweep is 
required to obtain a satisfactory solution. The satisfac- 
toriness of the solution is assessed by calculating the 

residual source R which is defined as 

+ uj:jCi+,.j+k + oi"jc‘i_ 1.J.k 

+ 4:jCi.j.eI - 4,jCi.j.k). 

The lower the value of R. the smaller the numerical 
error in the solution. In the case of the 2-dimensional 
variables (i.e. U,, k, or x) the absence of lateral 

neighbouring columns renders one application of the 
Gauss-elimination method ‘exact’. 

3.4. Boundary and initiul conditions 
The upstream conditions employed are normally 
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those given by experiment, if such data exist. When 
these are not available a step function is assumed for 
the concentration profile, i.e. the value of the con- 
centration is assumed zero everywhere except at the 
location of the source. 

The following boundary conditions are applied as 
the calculations proceed downstream. At upper and 
lower boundaries of the plume the concentration is set 
to zero provided the lower boundary is above the 
ground level; at a plane of symmetry or when the lower 
edge of the plume reaches the ground the mass flux of 
pollutant normal to this boundary is assumed to be 
zero. For the flow field, the value of k, E and U1 are 
given their free-stream values at the outer boundary 
while, at the wall, the no-slip condition for U1 is 
applied. Due to highly non-linear variation of the 
velocity near the wall a match is made to the logarith- 
mic law of the wall outside the viscosity affected region. 
The turbulence quantities k and 1 are prescribed at the 
nodes adjacent to the wall ; the energy dissipation rate 
there is equated to the generation rate of k (by 
assuming local equilibrium) while the turbulent kinetic 
energy is taken as four times the kinematic wall shear 
stress as indicated by Klebanolf’s data [20]. 

4. RESULTS AND DISCUSSION 

To assess the performance of the expanding grid and 
the numerical procedure, comparison was first made 
between the predicted and analytical solutions for 
diffusion from a point release in a homogeneous flow 
field. The numerical results were found to be in- 
distinguishable from the analytical solution quoted by 
Hinze [21]. A test of the algebraic stress model was 
accomplished by simulating KlebanoIPs [20] experi- 
ment of a two-dimensional turbulent flow over a 
smooth flat plate. Predictions are compared with 
experimental values of the mean velocity and shear 

stress u1u3 in Fig. 3, the level of agreement is con- 
sidered to be satisfactory. Comparisons for the normal 
stresses are shown in Fig. 4. The predicted stress levels 
in the outer region of the boundary layer are found to 
be slightly higher than the experimental values though 
this may be due in part to different definitions of 6 
between experiment and computation (reference [20] 
does not provide a precise definition). 

The principal plume-dispersal calculations focused 
on four cases: 

(i) a ground level release from a line source, 
(ii) an elevated line source, 

(iii) a ground release from a point source and 
(iv) an elevated release from a point source. 

In all cases the releases occurred within a turbulent, 
nominally two-dimensional boundary layer flowing 
over a plane, hydrodynamically smooth surface. Grid- 
independent solutions were obtained with 20 cross- 
stream nodes for the hydrodynamic field and a 15 x I5 
grid for the concentration.* 

Figure 5 shows the enlargement of the half height I., 

0- 
0 0.2 0.4 0.6 0.8 1.0 

q/s 

FIG. 3. Velocity and shear stress across flat plate boundary 
layer: - predictions ; 0, l experiments, Klebanoff [20]. 

O- 
, I I 

0 0.2 0.4 0.6 0.8 1.0 

X3/8 

FIG. 4. Turbulence intensity profiles across flat plate boun- 
dary layer : ~ predictions ; 0, @, l experiments, Kleba- 

noff [20]. 

with distance downstream of a plume emitted from a 
ground level line source.? The results show good 
agreement with Poreh and Cermak’s [22] experimen- 
tal data. These authors report that for an ‘intermediate 
zone’ extending to distances up to 186 from the point of 
release 3., is well fitted by the formula: 

%, = 0.076 x”,s, (30) 

implying that 3., is independent of both the boundary 
layer thickness and the free stream velocity. This 
behaviour is confirmed by the present study. In Fig. 6, 
for example, predictions of %, for two values of 
boundary layer thickness are in good agreement with 

*For two-dimensional plumes only 3 grid lines were 
employed in the lateral direction. 

tThe half height is defined as the height at which any 
streamwise position the concentration level has fallen to half 
its maximum. 



0 2 4 6 B 10 

x1 Cnf 

FIG. 5. Variation of width and maximum concentration from 
a ground-level, line source: -- -~ prediction ; 0, 0 measure- 

ment, Poreh and Cermak [22]. 

20 - 

- 12- 
E 
” 

: 8- 

0 I I 
0 2 4 6 8 10 

FIci. 6. Effect offree stream velocity on width ofline source: ~2 
fit given by 1223; predictions: ~~~~ c’, , = 2.74, li, , 

= 7.99. 

equation (30) for values of .T less than iXd; further 
downstream, however, the dispersal pattern becomes 
sensitive to boundary-layer thickness. Figure 7 shoas 
the effect of varying the mainstream velocity on the 
dispersal. Again, for values of ~(5 ICSS than 18, i , is 
independent of the velocity while at greater distances ;t 
slightly lower dispersal rate is observed for the higher 

velocity. The variation of ~na~~rnutll c(~r~cent~~ti~~n 
with d(~~llstrearn distance is shown 111 Fig. 6. Were 

again the predictions show close agreement with the 

experimental data of Poreh and C’ermak. Figure ii 

indicates that the profiles of concentration across the 

boundary layer are approximately self-similar in the 
‘intermediate region’; again the calculated profiles 
display a behaviour that agrees well with the experi- 

mental fit for this region. It should bc added that exact 

similarity is not to be expected, for it can be shown (F1 

Tahry [23]) that when the concentration equation is 

suitably non-dimensionalized a weak dependence on J. 
appears. mainly because of the dependence of (/.,!;il 

on Y. 
The predictions of an elevated line source simulated 

the experiments of Paranthoen and Trinite 1241, in 

which an electrically heated wire *as placed parallel to 
the wall and perpendicular to the mainstream velocity 

The Revnolds number of the flou. based on bourtdar:~ 
Layer thickness and mainstreal~l velocity was 17 100: 

the ratio of height of release IO boundary layer 
thickness was 0.5. Calculations of the vertical tcmpera- 
ture distribution are presented at several downstream 

locations in Fig. 9. Initially the predicted plume seems 
to have diffused slightly faster than the experimentat 
one. This discrepancy is we believe due to the use <of 

time and length scales characteristic of the r.rloc%~ 
rather than the scalar turbulent fluctuations; further 
discussion is provided in reference [I 51 and in Section 
5. Further downstream the experimental data fall 
beiow the predicted results, which may be attributed to 

a loss of heat through the wall influencing the experr- 

o.6 c u max Ia .“_ 
Q 

I cm-’ ! 
- 0.4 

0 - 1 ’ 0 
0 2 4 6 a 10 

x1 (ml 

Frc;. 7. Effect of initral thtckness of boundary layer on development of line source : C proposed algebraic fit 
to experiments [22], l experimental data [22]; predictions, U, , = 4.87 m/s: 5, = 0.127 m, n,, = 

0.28 m. 

. 1.0 

7 
/ 

, c 0.8 
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x3 1x3 

FIG. 8. Normalized concentration profiles at different down- 
stream stations: l fit to experiments [22]; predictions of 
WasselandCatton: Q-x, = 2.13m; O-x, = 3.66m; 0 
-x1 = 5,18m;presentpredictions:---x,/S = 3.2;--- 

x,/6 = 10; __ x,/6 = 13 and 18. 
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0 0.2 0.4 0.6 0.8 1.0 1.2 
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FIG. 9. Temperature profiles across air elevated line source: 
experiments[24]@-x,=O.O75m;O-xx,=0.135m;@ 
- x1 = 0.165m; predictions: --- x, = 0.075; --- x1 

= 0.135; ~ x1 = 0.165. 

mental data (the experimental temperature profiles 
suggest a non-zero slope at the wall). Despite these 
discrepancies the overall agreement is considered to be 
reasonably good. 

The case of the ground release from a point source is 
considered in Figs. 10-12. Figure 10 shows the va- 
riation of the vertical and lateral half widths A, and A, 
with downstream distance together with the experi- 
mental data of Malhotra and Cermak [25] and Solal 
[26]. The predictions agree well with both sets of 
experiments of the vertical spread while, for the lateral 
dispersal, close agreement with Malhotra and 

OL 
1 I I 

0 1 2 3 

x1 fm) 

FIG. 10. Growth of half-widths of ground level point source: 
0,. rJ 1 m = 2.74m/s [25] ; A U, m = 4.57 m/s [25] ; 0, n 

[26]; -.-, ---, - present predictions. 

Cermak’s data is observed. Discrepancies of up to 
14% are noted for Solal’s data, however, a disparity 
that may be due to convergence of the boundary-layer 
streamlines. 

The distribution of the maximum concentration in 
the plume with downstream distance is shown in Fig. 
11. The calculations are found to agree well with both 
sets of experimental data. Predictions of the lateral 
profiles of the relative concentration C/C,,, are shown 
in Fig. 12 for different heights. These profiles display 
similarity at different x locations over the region 
considered. The results are in complete agreement with 
Malhotra and Cermak’s empirical fit : 

C 
--=exp0.693{-@)‘-g)14j. 
C nlBX 

Dispersal from an elevated point source is con- 
sidered in Figs. 13-14. Here the source is placed at a 
height 0.6456. The Reynolds number based on the 
mainstream velocity and boundary layer thickness was 
approximately 9330 which corresponds to an experi- 
ment reported by Davar [3]. In Fig. 13 the quantities 
f13, /I2 are plotted as a function distance x* ; also shown 
is the variation of fl (the height of maximum con- 
centration) with x. In genera1 the calculations are in 
reasonable agreement with Davar’s data, except that 
they underestimate the lower value of &.t While no 
certain explanation can be given for the discrepancy, it 
might be said that uncertainties existed in the up 
stream experimental velocity profiles due to the arti- 
ficial thickening. Finally, Fig. 14 compares Davar’s 
measurements of lateral concentration profiles with 
the computed behavior at different heights at a 
particular x ; agreement is reasonably good. 

* p3 is the value of xg in the plane of symmetry where 
C = 0.7X,,, and & is the value of xz where C = 0.75C,,, at 
the height of C,,,. 

t/Is has two values at each value of x corresponding to 
positions in the upper and lower parts of the plume. 
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FK;. 11. Decay of maximum concentration in a ground level point source (for key see Fig. IO) 

0 0.4 0.8 1.2 1.6 2.0 

X2/ x2 

FK;. 12. Lateral concentration profiles for ground level point 
source: 0 C/C,,, = exp -0.693 [(.xJ~~)~ + (u,/i.,) “I, 

[25]; -- -- present predictions. 
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FK. 13. Spreading characteristics ofan elevated point source: 
0, l experiments, Davar [3]; present predictions. 

0 0.02 0.04 0.06 0.08 

FK;. 14. Concentration profiles in elevated point source at .r, 
= 0.914. 

Experiment [3] Present predictions 

0.0385 l 
0.0554 0 
0.072 0 

5. CONCLUDING REMARKS 

The computational scheme presented in the paper 
has been shown to give a generally satisfactory 
account of plume dispersal in the four test cases con- 
sidered. Although based upon a fairly elaborate physi- 
cal and numerical treatment, the scheme is sufficiently 
economical for use as the basis for extensive safety 
surveys. The economy arises from the use of inde- 
pendent finite-difference grids for the scalar and flow- 
field variables and from the use of the algebraic-stress- 
modelling hypothesis to reduce the transport equa- 
tions for the Reynolds stress and scalar fluxes to a set of 
explicit algebraic relations. 
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Although the present study has limited attention to 
neutrally buoyant tests the turbulence model adopted 
[ 1 l] was developed specifically to provide an expla- 
nation of the behavior of the atmospheric boundary 
layer under highly stratified conditions. It may thus be 
reasonably expected that the present scheme would 
provide useful dispersal predictions under realistic 

atmospheric conditions, at least so far as effects of 
stratification are concerned. 

In one respect however the present model does need 
improvement. The scheme contains only one charac- 
teristic turbulent length scale, k3”/& for both the 
velocity and the scalar fields. In the atmospheric 
boundary layer, however, especially near the point of 
release, far smaller scales characterize the dispersal of 
the pollutant than are typical of the flow field. As 
Lewellyn and Teske [ 151 have noted, no serious errors 
are introduced by the present practice for a ground- 
level release because, near the ground, velocity scales 
are appropriately small: the problem only becomes 
serious as the height of the release is increased. While, 
in the laboratory studies considered here, the errors 
introduced appear to be fairly small (c.f. Fig. ll), the 
effect in the atmospheric boundary layer could well be 
substantial because the ratio of plume 
width : boundary-layer height is typically some two 
orders of magnitude smaller than in the cases here 
examined. 
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DISPERSION BI ET TRIDIMENSIONNELLE D’UN SCALAIRE PASSIF 
DANS UNE COUCHE LIMITE TURBULENTE 

R&am& - Un modkle numbique est d&it pour prMire le transport d’un contaminant scalaire passif g 
travers la couche limite. Le modPle inclut une fermeture, pour les contraintes turbulentes et pour les flux 
thermiques, bash sur le modBle des rCf&ences [9-l 11. Le traitement numtrique utilise diffirentes grilles aux 
difT&rences finies pour les champs de vitesse et de scalaire chacun d’eux pouvant itre trait& independamment 
dans la direction de l’&coulement de faGon g atteindre les regions oti existent des gradients sensibles des 
variables. Des calculs sont trait&s pour des sources liniaires ou ponctuelles avec des d&bits faibles ou Clevts. 

Les calculs sont g8n6ralement en accord encourageant avec les mesures. 
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DIE ZWEI- UND DREIDIMENSIONALE VERTEILUNG EINES PASSIVEN 
SKALARES IN EINER TURBULENTEN GRENZSCHICHT 

Zusamenfassung-Zur Vorhersage des Transports einer passiven skalaren Verunreinigung durch eine 
turbulente Grenzschicht wird ein numerisches Berechnungsverfahren beschrieben. Das Verfahren enthalt 
einen algebraischen Ansatz fur die Berticksichtigung der turbulenten Schubspannungen und Warmestrome 
nach dem Verfahren der Literaturangaben [9-l I]. Ein Hauptgesichtspunkt der zahlenmajigen Behandlung 
ist die Verwendung verschiedener Netze endhcher Differenzen fur die Geschwindigkeits- und Skalarfelder, 
welche unabhlngig so weit in die Abwindrichtung ausgedehnt werden konnen, dafi sie gerade die Gebiete 
iiberdecken, wo bedeutende Gradienten der mapgeblichen Veranderlichen bestehen. Von Berechnungen fur 
die Ausbreitung von Linien- und Punktqueilen mit Auslassen sowohl am Boden als such in erhohter 
Position wird berichtet. Die Berechnungen sind allgemein in ermutigender Ubereinstimmung mit dem 
gemessenen Verhalten. 

ABYX- II TPEXMEPHOE PACHPEflEJIEHME fIACCMBHOI-0 CKAJIRPA 
B TYP6YJIEHTHOM fIOI-PAHMqHOM CJIOE 

Amwrauna - Onncaua cxeMa .n.sa qncneunoro pacgera nepeuoca naccctenoii ckaJtnpuoii npaMecs 
a Typ6yfleHTHOM n0rpa~WtH0~ Cnoe. CxeMa axnioqaer a;tre6paesecroe 3aMblKaHlle Tj'p6yneHTHbIX 

uanpnxcerinri N rennoabtx noroxoa. ocuoaanuoe na s4onens. a3nomenno~ a [9-l I]. Or:ie~arenbnoR 
OCO6eHHOCTbtOn~JUtaraeMOii CXeMbt IlB,'tReTCIl HCflOnb30BaHRe pa3nWHbtX KOHeYHO-pa3HOCTHbIXCeTOK 

/IDA nonefi c~opocui H cranapa, KaW,ytG H3 KOTOpbIX MO)I(HO HeSaBNWMO OT ,'IpyrOfi npO,!UtrtTb 

t, HanpaBneHHH Teq‘?HI(II. TaK qT06bt BK"tOWTb 06nacTti C CYlt@CTBeHHbtMH rpal,EleHTaMll COOTBCT- 

CTB,'tOL"HX 3aBHCHMbtX "epWdeHHbtX. npHBeileHbl paC'teTbl Wt5t iV44YJMH JtrtHeirHblX M TOYeqHblX 

ACTO'tHHKOB, pacnonoaetwbtx Ha pasnewbrx YpOBHttX B cnoe. Pe3ynbTaTbl pacqeroa y,toflneTBopa- 
TeilbHOCO~‘IIaCYtOTCII C U3MepeHHbIMH 3HaqeHHRMH. 


